naywinaung blog,Data Visualization ဒေတာအကြောင်း အပိုင်း ၂

ဒေတာအကြောင်း အပိုင်း ၂

ဒေတာအကြောင်း အပိုင်း ၂ post thumbnail image



ဒေတာဆိုတာ ကျွန်တော်တို့ နေ့စဉ်သုံးနေတဲ့ သတင်းအချက်အလက်တွေပါပဲ။ ဒါပေမယ့် ဒီဒေတာတွေကို ဘယ်လိုပုံစံနဲ့ ဖော်ပြမလဲဆိုတာက အရေးကြီးတယ်။ ဒေတာက အဓိက နှစ်မျိုးရှိပါတယ်။ အရေအတွက်ဆိုင်ရာ ဒေတာ (Quantitative) နဲ့ အရည်အသွေးဆိုင်ရာ ဒေတာ (Qualitative) ဆိုပြီး ခွဲလို့ရပါတယ်။ အခုကျွန်တော် ဒီနှစ်မျိုးကို တစ်မျိုးချင်း ပြောပြပြီး ဘယ်လို ပုံဖော်နည်းတွေ သုံးလို့ရလဲဆိုတာ ဆက်ရှင်းပါမယ်။

၁. ဒေတာ အမျိုးအစားတွေအကြောင်း

(က) အရေအတွက်ဆိုင်ရာ ဒေတာ

ဒါက ဂဏန်းတွေနဲ့ တိုင်းတာလို့ရတဲ့ ဒေတာမျိုးပါပဲ။ ဥပမာ ပြောရရင် ကျောင်းသားတစ်ယောက်ရဲ့ အလေးချိန်၊ အမြင့်၊ ဒါမှမဟုတ် ဆိုင်တစ်ဆိုင်မှာ တစ်နေ့ကို ရောင်းထွက်တဲ့ ပစ္စည်းအရေအတွက်မျိုးပေါ့။ ဒီ အရေအတွက်ဆိုင်ရာ ဒေတာကို ထပ်ခွဲကြည့်ရင် နှစ်မျိုးရှိပါတယ်။
– သီးခြားဒေတာ (Discrete Data):
ဒါက သတ်မှတ်ထားတဲ့ တန်ဖိုးတွေပဲ ဖြစ်နိုင်ပါတယ်။ ဥပမာ – ကျောင်းမှာ ကျောင်းသား ၅၀ ယောက်ရှိတယ်၊ ကား ၃ စီးရှိတယ်။ ၅၀.၅ ယောက်ဆိုတာမျိုး ဖြစ်လို့မရပါဘူး။
– ဆက်လက်ဒေတာ (Continuous Data):
ဒါကတော့ မရေမတွက်နိုင်တဲ့ တန်ဖိုးတွေ ယူနိုင်ပါတယ်။ ဥပမာ – လူတစ်ယောက်ရဲ့ အလေးချိန် ၆၅.၇ ကီလိုဂရမ် ဖြစ်နိုင်တယ်၊ အမြင့် ၁.၇၅ မီတာဆိုလည်း ဖြစ်နိုင်ပါတယ်။

(ခ) အရည်အသွေးဆိုင်ရာ ဒေတာ

ဒါကတော့ ဂဏန်းမဟုတ်တဲ့ ဒေတာမျိုးပေါ့။ အမျိုးအစား ဒါမှမဟုတ် ဖော်ပြချက်မျိုးတွေ ဖြစ်တယ်။ ဒါကိုလည်း နှစ်မျိုးခွဲလို့ရပါတယ်။
– အမည်ခံ ဒေတာ (Nominal Data):
ဒါက အမျိုးအစားတွေပါပဲ၊ အစီအစဉ်မရှိပါဘူး။ ဥပမာ – လူမျိုးစုတွေ (ဗမာ၊ ကချင်၊ ကရင်) ဒါမှမဟုတ် ကျား/မ ဆိုတာမျိုးပေါ့။
– အစီအစဉ်ရှိ ဒေတာ (Ordinal Data):
ဒါကတော့ အမျိုးအစားတွေမှာ အစီအစဉ်တစ်ခုရှိပါတယ်။ ဥပမာ – ပညာရေးအဆင့်တွေ (မူလတန်း၊ အလယ်တန်း၊ အထက်တန်း) ဆိုတာမျိုးပေါ့။

၂. ဒေတာကို ဘယ်လိုပုံဖော်မလဲ?

ဒေတာကို ပုံဖော်တယ်ဆိုတာ ဒေတာတွေကို ကြည့်လို့လွယ်အောင် ဇယား၊ ဂရပ်ဖ်၊ ဒါမှမဟုတ် ပုံတွေနဲ့ ဖော်ပြတာပါပဲ။ ဒါပေမယ့် ဒေတာအမျိုးအစားအလိုက် သင့်တော်တဲ့ ပုံဖော်နည်းကို ရွေးရပါမယ်။ မဟုတ်ရင် ကြည့်တဲ့သူတွေ ရှုပ်ထွေးသွားနိုင်ပါတယ်။

(က) အရေအတွက်ဆိုင်ရာ ဒေတာအတွက်

– ဘားဇယား (Bar Chart):
ဒါက သီးခြားဒေတာတွေကို နှိုင်းယှဉ်ချင်ရင် အသုံးဝင်ပါတယ်။ ဥပမာ – မြို့တစ်မြို့မှာ ကျောင်းသားအရေအတွက်ကို နှိုင်းယှဉ်ပြချင်ရင် ဘားတစ်ခုချင်းစီက မြို့တစ်မြို့ကို ကိုယ်စားပြုပြီး အမြင့်က အရေအတွက်ကို ပြတယ်။

– လိုင်းဇယား (Line Chart):
ဒါကတော့ အချိန်နဲ့အမျှ ပြောင်းလဲတဲ့ ဒေတာတွေအတွက် အဆင်ပြေပါတယ်။ ဥပမာ – တစ်နှစ်အတွင်း မိုးလေထုအခြေအနေ အပြောင်းအလဲကို လိုင်းတစ်ကြောင်းနဲ့ ဆွဲပြလို့ရပါတယ်။

– ဟစ်စတိုဂရမ် (Histogram):
ဒါက ဆက်လက်ဒေတာတွေရဲ့ ဖြန့်ကျက်ပုံကို ပြပါတယ်။ ဥပမာ – ကျောင်းသားတွေရဲ့ အလေးချိန်တွေကို အုပ်စုဖွဲ့ပြီး ဘယ်လောက်များများ ရှိလဲဆိုတာ ကြည့်လို့ရပါတယ်။

– စကတ်တာပလော့ (Scatter Plot):
ဒါက ဒေတာ နှစ်ခုရဲ့ ဆက်နွယ်မှုကို ပြပါတယ်။ ဥပမာ – လူတွေရဲ့ အလေးချိန်နဲ့ အမြင့်ကို တွဲပြီး ဆက်နွယ်မှုရှိမရှိ ကြည့်လို့ရပါတယ်။

(ခ) အရည်အသွေးဆိုင်ရာ ဒေတာအတွက်

– ပိုင်ဇယား (Pie Chart):
ဒါက အမျိုးအစားတစ်ခုချင်းစီရဲ့ အချိုးအစားကို ပြဖို့ အဆင်ပြေပါတယ်။ ဥပမာ – လူဦးရေထဲမှာ ဗမာဘယ်လောက်၊ ကရင်ဘယ်လောက် ဆိုတာကို ရာခိုင်နှုန်းနဲ့ ပြလို့ရပါတယ်။

– ဘားဇယား (Bar Chart):
ဒါက အမည်ခံ ဒါမှမဟုတ် အစီအစဉ်ရှိတဲ့ ဒေတာတွေကို နှိုင်းယှဉ်ဖို့ အဆင်ပြေပါတယ်။ ဥပမာ – မူလတန်း၊ အလယ်တန်း၊ အထက်တန်းကျောင်းသားတွေ အရေအတွက်ကို ဘားတွေနဲ့ ပြလို့ရတယ်။

– သစ်ပင်ပုံစံဇယား (Tree Map):
ဒါကလည်း အမျိုးအစားတွေရဲ့ အချိုးအစားကို ပြဖို့ အဆင်ပြေပါတယ်။ ဥပမာ – ကျား/မ အချိုးအစားကို ရုပ်ပုံလေးတွေနဲ့ ဖော်ပြလို့ရပါတယ်။

၃. ဘာကြောင့် ဒေတာ ပုံဖော်တာက အရေးကြီးလဲ?

ဒေတာတွေကို ဂဏန်းတွေနဲ့ပဲ ပြထားရင် ကြည့်တဲ့သူတွေ နားမလည်နိုင်ဘူး၊ ရှုပ်ထွေးသွားနိုင်ပါတယ်။ ဒါပေမယ့် ပုံဖော်လိုက်ရင် တစ်ချက်ကြည့်ရုံနဲ့ ဘာက ဘယ်လိုဖြစ်နေလဲ သိနိုင်တာပါ။ ဥပမာ – စီးပွားရေးလုပ်ငန်းတစ်ခုမှာ ဘယ်လို ပစ္စည်းတွေ အရောင်းများလဲဆိုတာကို ဘားဇယားနဲ့ ပြလိုက်ရင် ပိုလွယ်ပါတယ်။ ဒါမှမဟုတ် ကျန်းမာရေးဌာနမှာ ရောဂါဖြစ်ပွားမှုကို လိုင်းဇယားနဲ့ ပြရင် ဘယ်အချိန်မှာ ရောဂါများလဲဆိုတာ မြင်သာပါတယ်။

နောက်ဆုံးအနေနဲ့ ဒေတာကို ဘယ်လိုပုံဖော်မလဲဆိုတာ ဒေတာရဲ့ အမျိုးအစားပေါ် မူတည်ပါတယ်။ မြန်မာပြည်မှာလည်း အခုနောက်ပိုင်း ဒေတာ ပုံဖော်တာကို စီးပွားရေး၊ ပညာရေး၊ ကျန်းမာရေးနဲ့ အစိုးရအဖွဲ့အစည်းတွေမှာ သုံးလာကြပါပြီ။ ဒါကြောင့် ဒေတာတွေကို ကြည့်လွယ်အောင် ဘယ်လိုပုံဖော်ရမလဲဆိုတာ နည်းနည်းသိထားရင် အလုပ်တွေမှာ အဆင်ပြေသွားပါမယ်။

နပေတိုး

Leave a Reply

Your email address will not be published. Required fields are marked *

Related Post

eHealth M_Zawisza_Business_ModeleHealth M_Zawisza_Business_Model

#eHealth#M_Zawisza_Business_Modelehealth နှင့်ပတ်သက်တဲ့ model တွေကို ရှေ့ပိုင်းမှာ ရှင်းပြခဲ့ပါတယ်။ အခုရေးသားမဲ့ business model ကတော့ နိုင်ငံတကာ ကုမ္ပဏီတော်တော်များများမှာ အသုံးများတဲ့ Enterprise Model တစ်ခုပဲဖြစ်ပါတယ်။ ဒီModel မှာတော့ အစိတ်အပိုင်း ကိုးခုပါဝင်ပါတယ်။အဲ့ဒါတွေကတော့၁။ Key Partners ( မိတ်ဖက်အဖွဲ့အစည်းများ)၂။ Key Activities ( ပင်မလုပ်ငန်းဆောင်ရွက်မှုများ)၃။ Key Resources

EHEALTH ArchitectureEHEALTH Architecture

#eHealth#Architecture     အရင်အပတ်တွေက eHealth Model တွေအကြောင်းကို အကြမ်းဖျဉ်းရေးခဲ့ပါတယ်။ ကျန်တဲ့ model တွေကို ဆက်မရေးတော့ပါဘူး။ အားလုံးပဲ မိမိတို့ စိတ်ဝင်စားရင် ရှာဖတ်နိုင်ပါတယ်။ ဒါမှမဟုတ် ကျွန်တော့်ထံ email ပို့ပြီး ဆက်သွယ်နိုင်ပါတယ်။အခု ဆက်ပြီးရေးသားချင်တာက eHealth Architecture တွေပဲဖြစ်ပါတယ်။ Architecture တွေအကြောင်းကို မပြောခင် ဘာကြောင့် Architecture တွေက အရေးကြီးသလဲ

သုတေသနခေါင်းစဉ်တစ်ခုကို ဘယ်လိုရွေးချယ်မလဲသုတေသနခေါင်းစဉ်တစ်ခုကို ဘယ်လိုရွေးချယ်မလဲ

သုတေသန ခေါင်းစဉ်တစ်ခုကို ရွေးချယ်ခြင်း သုတေသနလုပ်ငန်းစဉ်ရဲ့ အစမှာ အရေးအကြီးဆုံးနဲ့ ပထမဆုံး ခြေလှမ်းကတော့ သင့်တော်တဲ့ သုတေသနခေါင်းစဉ်တစ်ခုကို ရွေးချယ်ခြင်းပဲဖြစ်ပါတယ်။ ကောင်းမွန်တဲ့ ခေါင်းစဉ်တစ်ခုဟာ မိတ်ဆွေရဲ့ သုတေသနကို လမ်းညွှန်ပေးနိုင်သလို၊ စိတ်ဝင်စားစရာကောင်းပြီး အောင်မြင်တဲ့ သုတေသနတစ်ခု ဖြစ်လာဖို့အတွက်လည်း အခြေခံအုတ်မြစ်ကောင်းတစ်ခုကို ချပေးနိုင်ပါတယ်။ ဒါကြောင့် ခေါင်းစဉ်တစ်ခုကို ရွေးချယ်တဲ့အခါမှာ မိတ်ဆွေရဲ့ စိတ်ဝင်စားမှု၊ သုတေသနပြုလုပ်နိုင်မှုနဲ့ သင့်တော်တဲ့ အကြောင်းအရာတွေကို