Category: Biostatistics

Chapter 13 Nonparametric and DistributionChapter 13 Nonparametric and Distribution

အခန်း ၁၃ ဖြစ်တဲ့ “Nonparametric and Distribution-Free စာရင်းအင်းပညာ” အကြောင်းကို ဆွေးနွေးပေးပါမယ် ။Nonparametric and Distribution-Free စာရင်းအင်းပညာ နိဒါန်း စာရင်းအင်းပညာမှာ ကောက်ချက်ဆွဲခြင်း (inferential statistics) ကို လုပ်တဲ့အခါ အခန်း ၇ ကစပြီး သင်ယူခဲ့ရတဲ့ t-test, F-test လို နည်းလမ်းတွေဟာ “Parametric” နည်းလမ်းတွေ

Chapter 12 The Chi-Square DistributionChapter 12 The Chi-Square Distribution

အခန်း ၁၂ ဖြစ်တဲ့ “ခိုင်စကွဲယား ဖြန့်ဝေမှု (The Chi-Square Distribution) နဲ့ ကြိမ်နှုန်းဆိုင်ရာ ခွဲခြမ်းစိတ်ဖြာခြင်း (Analysis of Frequencies)” အကြောင်းကို ဆွေးနွေးပေးပါမယ်။ ဒီအခန်းဟာ ကျွန်တော်တို့ အရင်က လေ့လာခဲ့တဲ့ ကိန်းဂဏာန်း တိုင်းတာမှုတွေ ဒါမှမဟုတ် ဆက်နွယ်မှုတွေနဲ့ မတူဘဲ အရေအတွက် (counts) ဒါမှမဟုတ် ကြိမ်နှုန်း (frequencies)

Chapter 11 Regression Analysis: Some Additional TechniquesChapter 11 Regression Analysis: Some Additional Techniques

အခန်း ၁၁ ဖြစ်တဲ့ “ဆက်စပ်တန်ဖိုး ခန့်မှန်းတွက်ချက်ခြင်းဆိုင်ရာ အပိုဆောင်းနည်းစနစ်များ (Regression Analysis: Some Additional Techniques)” အကြောင်းကို အသေးစိတ် ဆွေးနွေးပေးပါမယ်။ ဆက်စပ်တန်ဖိုး ခန့်မှန်းတွက်ချက်ခြင်းဆိုင်ရာ အပိုဆောင်းနည်းစနစ်များ (Regression Analysis: Some Additional Techniques) ဒီအခန်း ၁၁ ကတော့ ကျွန်တော်တို့ အခန်း ၉ နဲ့ ၁၀

Chapter 10 Multiple Regression and CorrelationChapter 10 Multiple Regression and Correlation

အခန်း ၁၀ ဖြစ်တဲ့ “မျိုးစုံသုံး ပြန်လည်ဆန်းစစ်ခြင်းနှင့် ဆက်စပ်မှု (Multiple Regression and Correlation)” အကြောင်းကို ဆွေးနွေးပေးပါမယ်။ ဒါဟာ ကျွန်တော်တို့ အရင်ဆွေးနွေးခဲ့တဲ့ အခန်း ၂ က ဖော်ပြချက်ဆိုင်ရာ စာရင်းအင်းပညာနဲ့ အခန်း ၉ က ရိုးရှင်းသော ပြန်လည်ဆန်းစစ်ခြင်း (Simple Linear Regression) တို့ရဲ့ အဆက်ဖြစ်ပါတယ်।

Simple Linear Regression နှင့် CorrelationSimple Linear Regression နှင့် Correlation

အခန်း ၉ ဖြစ်တဲ့ “Simple Linear Regression နှင့် Correlation” အကြောင်းကို အသေးစိတ် တင်ပြပေးပါမယ်။ဒီအခန်းက ဘာတွေအကြောင်းလဲဆိုတော့ အချက်အလက်နှစ်ခုကြားက ဆက်နွှယ်မှုကို ဘယ်လို လေ့လာမယ်၊ တိုင်းတာမလဲဆိုတဲ့ အခြေခံနည်းလမ်းနှစ်ခုကို မိတ်ဆက်ပေးတာ ဖြစ်ပါတယ်။ Regression က အချက်အလက်တစ်ခု (Y) ကို နောက်တစ်ခု (X) ကို အခြေခံပြီး ခန့်မှန်းတာ၊

ANOVAANOVA

Analysis of Variance (ANOVA) ဆိုတာ ဘာလဲ၊ ဘာလို့သုံးတာလဲ ပြောရမယ်ဆိုရင် Analysis of Variance လို့ခေါ်တဲ့ ANOVA ဟာ ကိန်းဂဏန်းအချက်အလက်တွေကို ခွဲခြမ်းစိတ်ဖြာတဲ့ နည်းလမ်းတစ်ခုပါ။ ဒီအခန်းရဲ့ ရည်ရွယ်ချက်ကတော့ linear models လို့ခေါ်တဲ့ နည်းလမ်းတွေထဲက ပထမဆုံး နည်းလမ်းအကြောင်းကို မိတ်ဆက်ပေးဖို့ပါပဲ။ ANOVA ရဲ့ အဓိက အိုင်ဒီယာ

Hypothesis TestingHypothesis Testing

အခန်း ၇ – ယူဆချက် စမ်းသပ်ခြင်း (Hypothesis Testing) ဒီအခန်းမှာတော့ “ယူဆချက် စမ်းသပ်ခြင်း” ဆိုတဲ့အကြောင်းကို အဓိကထားပြီး ဆွေးနွေးသွားမှာပါ။ စာရင်းအင်းနဲ့ပတ်သက်တဲ့ ကောက်ချက်ချခြင်းနဲ့ပတ်သက်လာတဲ့အခါ၊ အရေးကြီးတဲ့နယ်ပယ်နှစ်ခုရှိပါတယ်။ တစ်ခုက ခန့်မှန်းခြင်း (Estimation) ဖြစ်ပြီး၊ တစ်ခုက ယူဆချက် စမ်းသပ်ခြင်း (Hypothesis Testing) ဖြစ်ပါတယ်။ ယူဆချက် စမ်းသပ်ခြင်း ဆိုတာကတော့ လူဦးရေ

statistical inferencestatistical inference

Chapter 6 ဟာ စာရင်းအင်းဆိုင်ရာ ကောက်ချက်ချခြင်း (statistical inference) မှာ ပထမဆုံးအရေးကြီးတဲ့အပိုင်းဖြစ်တဲ့ “ခန့်မှန်းခြင်း” (estimation) ကို အဓိက ရှင်းလင်းထားပါတယ်။ ဒီခန့်မှန်းခြင်း ဆိုတာကတော့ Chapter 5 မှာ တင်ပြခဲ့တဲ့ sampling distribution သီအိုရီနဲ့ Central Limit Theorem ကို အခြေခံထားတာပါ။ Chapter 6

Chapter 5 SOME IMPORTANT SAMPLING DISTRIBUTIONSChapter 5 SOME IMPORTANT SAMPLING DISTRIBUTIONS

အခန်း (၅) တွင်ပါဝင်သော “အရေးကြီးသော နမူနာဖြန့်ဝေမှုအချို့” (SOME IMPORTANT SAMPLING DISTRIBUTIONS) သည် စာရင်းအင်းဘာသာရပ်ရှိ အရေးကြီးဆုံး အခန်းများထဲမှ တစ်ခုဖြစ်ပြီး၊ ဖော်ပြချက်ဆိုင်ရာစာရင်းအင်း (descriptive statistics) နှင့် ဖြစ်နိုင်ခြေသဘောတရား (probability) တို့မှ ကောက်ချက်ဆွဲခြင်းဆိုင်ရာစာရင်းအင်း (inferential statistics) သို့ ကူးပြောင်းရာတွင် အဓိကတံတားအဖြစ် တည်ရှိနေသည်။ ကောက်ချက်ဆွဲခြင်းဆိုသည်မှာ လူဦးရေ

Chapter 4: Probability DistributionsChapter 4: Probability Distributions

Chapter 4: Probability Distributions Chapter 4: Probability Distributions အခန်းကတော့ ကျန်းမာရေးနယ်ပယ်မှာ အသုံးများတဲ့ ဖြစ်နိုင်ခြေဖြန့်ဝေမှုများ (Probability Distributions) ကို မိတ်ဆက်ပေးထားတာပါ။ Probability distributions ဆိုတာကတော့ ကျပန်းဖြစ်နိုင်ချေရှိတဲ့ ကိန်းရှင်တစ်ခုရဲ့ ဖြစ်နိုင်ခြေတွေကို ဖော်ပြတဲ့ပုံစံပါပဲ။ ဒီအခန်းမှာ အဓိကအားဖြင့် သင်ရမယ့်အရာတွေကတော့1.ကျပန်းကိန်းရှင်တွေ (Random Variables) အကြောင်း2.Discrete Probability